АКОР в России впервые был разработан профессором Летовым. Заслуга профессора Летова состоит в том, что он процесс синтеза оптимального управления поставил на математическую основу, выраженную в аналитической форме. Для этого профессор Летов обоснованно в своем методе выбирал критерий оптимальности и на основании математической модели объекта управления и выбранного критерия оптимальности аналитически находил выражение для алгоритма оптимального управления или выражение для оптимального регулятора. Одновременно с профессором Летовым американским математиком Калманом был разработан метод подобный АКОРу, который назывался Метод пространства состояния, который явился основой современной теории управления. Заслуга Калмана состоит в том, что он разработал методы синтеза алгоритма оптимального управления, не только для детерминированной динамической системы, но и для стохастических динамических систем (со случайным переходным процессом).
(1.2.1.2.1)
где – матрица коэффициентов объекта управления, коэффициенты зависят от времени;
- прямоугольная матрица распределения управляющих воздействий. Коэффициенты этой матрицы также зависят от времени;
- n-мерный вектор состояния;
- m-мерный вектор управления.
(1.2.1.2.2)
- p-мерный вектор выхода;
- матрица выхода динамической системы коэффициентов, которые зависят от времени.
В постановке задачи АКОР очень важное место занимает выбор критерия оптимальности или выбор функционала качества.
В общем случае для обоснованного выбора критерия оптимальности выбирается желаемый вектор выходных координат, задача АКОР состоит в том, чтобы текущее значение выхода вектора было близко к желаемому
(1.2.1.2.3)
Мы хотим чтобы в , при
,
В этом случае, учитывая рассуждения критерия оптимальности в общем виде можно представить так:
|

Задача АКОР с критерия вида (1.2.1.2.4) называется задачей слежения, текущая выходная координата отслеживания желаемых выходных координат.
Физический смысл слагаемых:
1-ое слагаемое представляет собой просуммированную ошибку и в этом слагаемом матрица Q(t) это матрица квадратичной формы . Весовые коэффициенты этой матрицы выбираются с тем расчетом, чтобы в конечном итоге первое слагаемое имело минимальное значение. 1-ое слагаемое характеризует точность работы системы.
2-ое слагаемое - квадратичная форма. Физически характеризует затраты энергии на управление, косвенным образом это слагаемое характеризует и быстродействие системы, чем больше затраты энергии на управление, тем более быстродейственной является система. Выбирая компромисс между затратами энергии на управление и полученным быстродействием:
Второй случай решения задачи АКОР.
|

Целью управления является удержание выходных координат объекта
|

Если начальное отклонение выходных координат относительно 0 велико, то управляющее устройство должно в начале выходные координаты приблизить к нулю, а затем удерживать их около нуля, при этом не расходуя много энергии на управление. Подобную задачу называют задачей о регуляторе выхода.
Другое по теме:
Ремонт генераторов переменного тока
Ремонт автомобилей представляет собой комплекс операций
по восстановлению исправности автомобилей или работоспособности автомобилей и
восстановлению ресурса автомобилей и его составных частей.
Техническая политика в области поддержания
работоспособности автомобилей основана на планово- ...
Разработка съемника самолетного ремкомплекта
Цель этой работы состоит в
том, чтобы спроектировать винтовой механизм авиационных устройств (съёмник).
Назначение передачи винт-гайка – преобразование вращательного движения в
поступательное. Передачи обеспечивают большой выигрыш в силе, возможность
получения медленного движения, большу ...
Определение экономической эффективности электрической тяги
Так как в настоящее время износ техники на ж.д. транспорте превышает 70%,
то обновление изношенных основных средств и введение в эксплуатацию более
совершенных является главной задачей экономической стратегии управления
железными дорогами.
Работа выполняется в соответствии с методическ ...